
7
MSM Procedures and Macros

Introduction . 7-2
MSMAlertFatal . 7-3
MSMAlertWarning . 7-4
MSMAlloc . 7-5
MSMAllocPages . 7-6
MSMAllocateRCB . 7-7
MSMDisableHardwareInterrupt (macro) 7-9
MSMDriverRemove . 7-10
MSMDoEndOfInterrupt (macro) . 7-11
MSMEnableHardwareInterrupt (macro) 7-12
MSMEnablePolling . 7-13
MSMEndCriticalSection (macro) . 7-14
MSMFree . 7-16
MSMFreePages . 7-17
MSMGetCriticalStatus (macro) . 7-18
MSMGetCurrentTime (macro) . 7-19
MSMGetHardwareBusType (macro) . 7-20
MSMGetProcessorSpeedRating (macro) 7-21
MSMGetRealModeWorkspace (macro) . 7-22
MSMInitAlloc . 7-24
MSMInitFree . 7-25
MSMParseCustomKeywords . 7-26

Custom Keyword Procedure . 7-27
MSMParseDriverParameters . 7-30
MSMPrintString . 7-34
MSMPrintStringFatal . 7-35
MSMPrintStringWarning . 7-36
MSMPSemaphore (macro) . 7-37
MSMReadEISAConfig . 7-38
MSMReadPhysicalMemory . 7-39
MSMRealModeInterrupt (macro) . 7-40
MSMRegisterHardwareOptions . 7-41
MSMRegisterMLID . 7-43
MSMRescheduleLast (macro) . 7-44
MSMReturnDriverResources . 7-45
MSMReturnNotificationECB (macro) . 7-46
MSMFastReturnNotificationECB (macro) 7-46
MSMReturnRCB (macro) . 7-47
MSMScheduleAESCallBack . 7-48
MSMScheduleIntTimeCallBack . 7-49
MSMServiceEvents (macro) . 7-50
MSMServiceEventsAndRet (macro) . 7-51
MSMSetHardwareInterrupt . 7-52
MSMStartCriticalSection (macro) . 7-53
MSMVSemaphore (macro) . 7-54
MSMWritePhysicalMemory . 7-55

Version 1.00 7 – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

This chapter describes the MSM procedures and macros provided as
tools for HSM developers. These MSM procedures, along with the
topology specific procedures described in Chapter 6, manage the
primary details of interfacing the HSM to the Link Support Layer. The
procedures and macros in this chapter are media independent and
handle generic initialization and run-time issues. The macros included
in this section are defined in the MSM.INC file.

7 – 2 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMAlertFatal

On Entry

EBP Pointer to Adapter Data Space

ECX Possible argument #1

EDX Possible argument #2

ESI Pointer to null terminated error message

Interrupts can be in any state, but will be disabled during the call

Call at process or interrupt time

On Return

Interrupts are in the same state as when the routine was called

Note EBX and EBP are preserved

Description The HSM can call MSMAlertFatal during regular operation (run-time)
to notify the operating system of driver hardware or software problems.
An error severity level of "fatal" will be reported with the developer-
provided error message. This routine will not relinquish control to
other procedures during execution.

The "Possible Arguments #1 and #2" above are used here the same way
in which they are used in the printf routine in C. If there are no format
specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional
string format. If the string is preceded by a word size error number in
the range of 100-999, the MSM will print the driver name, the platform
name (NW for NetWare 386), the decimal error number, and the
instance of the board, before printing the specified string.
(See Appendix H for a listing of standard messages.)

Example

ErrorMessage dw 105
db "Board did not respond to multicast update.", 0

•
•
•

lea ESI, ErrorMessage
call MSMAlertFatal

The example above would output the following message if the adapter
is an NE2000 and was the first NE2000 registered:

NE2000-NW-105-Adapter 1: Board did not respond to multicast update.

Version 1.00 7 – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMAlertWarning

On Entry

EBP Pointer to the Adapter Data Space

ECX Possible argument #1

EDX Possible argument #2

ESI Pointer to a null terminated error message

Interrupts can be in any state, but will be disabled during the call

Call at process time or interrupt time

On Return

Interrupts are in the same state as when the routine was called

Note EBX and EBP are preserved

Description The HSM can call MSMAlertWarning during regular operation
(run-time) to notify the operating system of driver hardware or software
problems. An error severity level of "warning" will be reported with the
developer-provided error message. This routine will not relinquish
control to other procedures during execution.

The "Possible Arguments #1 and #2" above are used here the same way
in which they are used in the printf routine in "C." If there are no
format specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional
string format. If the string is preceded by a word size error number in
the range of 100-999, the MSM will print the driver name, the platform
name (NW for NetWare 386), the decimal error number, and the
instance of the board, before printing the specified string.
(See Appendix H for a listing of standard messages.)

Example

ErrorMessage dw 105
db "Board did not respond to multicast update.",0

•
•
•
lea ESI, ErrorMessage
call MSMAlertWarning

The example above would output the following message if the adapter
is an NE2000 adapter and was the first NE2000 registered:

NE2000-NW-105-Adapter 1: Board did not respond to multicast update.

7 – 4 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMAlloc

On Entry EBP Pointer to the Adapter Data Space

EAX Number of bytes of memory to allocate

Interrupts can be in any state (but might be enabled during the call)

Call at process time only

On Return EAX Pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called

Note EBX, EBP, ESI, and EDI are preserved

Description The HSM may use this call to allocate memory at process time.
MSMAlloc returns a pointer to the allocated buffer in EAX. If the
routine was unsuccessful, EAX will be zero. It is the responsibility of
the HSM to return this buffer at shutdown using MSMFree.

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any non-zero value (see chapter 3), the MSM will allocate
memory below the 16 megabyte boundary.

Example

mov eax, UserBufferSize
call MSMAlloc
or eax,eax
jz ErrorAllocatingBuffer

Version 1.00 7 – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMAllocPages

On Entry EAX Number of bytes of memory to allocate

Interrupts can be in any state

Call at process time only

On Return EAX Pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called

Note EBX, EBP, ESI, and EDI are preserved

Description The HSM may use this call to allocate a memory buffer on a 4K page
boundary at process time. MSMAllocPages returns a pointer to the
allocated buffer in EAX. If the routine was unsuccessful, EAX will be
zero. It is the responsibility of the HSM to return this buffer at
shutdown using MSMFreePages.

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any non-zero value (see chapter 3), the MSM will allocate
memory below the 16 megabyte boundary.

Example

mov eax, UserPageBufferSize
call MSMAllocPages
or eax,eax
jz ErrorAllocatingBuffer

7 – 6 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMAllocateRCB

On Entry EBP Pointer to the Adapter Data Space

ESI Packet Size including all the headers if known; otherwise use

the maximum packet size.

Interrupts can be in any state

Execute at process or interrupt time

On Return ESI Pointer to an RCB (non-fragmented)

Flags zero flag is set if routine is successful

Interrupts are disabled

Note EAX is destroyed; all other registers are preserved

Description The HSM uses MSMAllocateRCB to allocate an RCB for a packet it has
received or to preallocate an RCB for a packet it will be receiving. The
RCB returned will be non-fragmented (see Chapter 4) and will be large
enough to hold the received packet frame. The length passed in
register ESI should also include the length of all protocol and hardware
headers. If an RCB is not available, the MSM will increment the
NoECBAvailableCount statistics counter and the packet should be
discarded.

HSMs that support bus-mastering DMA adapters should use this
routine to preallocate RCBs. In this case, the HSM should set ESI to
the maximum packet size specified by the MLIDMaximumSize field of
the configuration table before using MSMAllocateRCB.

After the adapter has copied the packet into the RCBDataBuffer field
of the RCB, the HSM should use either <TSM>ProcessGetRCB or
<TSM>FastProcessGetRCB to return the RCB to the MSM. If the
adapter is ECB aware and has previously filled in all the RCB fields
according to the ODI specification, the HSM should call
<TSM>RcvComplete or <TSM>FastRcvComplete.

Note: If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any non-zero value (see chapter 3), the MSM will allocate
the RCB in memory below the 16 megabyte boundary.

Version 1.00 7 – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Special Instructions Ethernet

The HSM should start copying the packet from the 6 byte destination
field of the media header into the RCBDataBuffer field of the RCB.

Token-Ring

The HSM should start copying the packet from the Access Control byte
of the media header into the RCBDataBuffer field of the RCB.

FDDI

The HSM should start copying the packet from the Frame Control byte
of the media header into the RCBDataBuffer field of the RCB.

PCN2L

This routine is not used for PCN2 drivers.

Example

; ebx = ptr to Frame Data Space

mov esi,[ebx].MLIDMaximumSize ; ESI = Max Packet size
call MSMAllocateRCB ; Get an RCB
jnz UnableToAllocateRCB ; Jump if unsuccessful

7 – 8 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMDisableHardwareInterrupt (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts are disabled

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EAX, ECX and EDX are destroyed

Description This macro disables the adapter’s interrupt line on the Programmable
Interrupt Controller (PIC). This macro should not be used when
sharing the interrupt.

Important ! Only use this macro if interrupts can not be enabled and disabled at the
adapter hardware level. If you can control interrupts at the adapter,
you should implement the DriverEnableInterrupt and DriverDisable-
Interrupt routines described in Chapter 5. Drivers that control
interrupts at the adapter can be transported more easily to other OS
platforms where access to the PIC is restricted.

Example

DriverISR proc
MSMDisableHardwareInterrupt
MSMDoEndOfInterrupt
inc [ebp].InDriverISR ; Set for DriverSend
.
. (Service the adapter)
.
dec [ebp].InDriverISR ; Clear InISR flag
MSMEnableHardwareInterrupt
MSMServiceEventsAndRet ; Let LSL unqueue returned

DriverISR endp

DriverSend proc
cmp [ebp].InDriverISR, 0 ; Called from DriverISR?
jnz DriverStartSend ; Jump if so
MSMDisableHardwareInterrupt

DriverStartSend:
.
. (Send the packet)
.
cmp [ebp].InDriverISR, 0 ; Called from DriverISR?
jnz <TSM>SendComplete ; We’re finished if so.

MSMEnableHardwareInterrupt
jmp <TSM>FastSendComplete ; Give back TCB and service events

DriverSend endp

Version 1.00 7 – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMDriverRemove

On Entry

EAX DriverModuleHandle from the DriverParameterBlock structure

Interrupts can be in any state

Call at process time only

On Return

EAX is preserved

Interrupts are unchanged

Description This routine is called by the HSM’s DriverRemove procedure to
de-register the driver and return all driver resources.
MSMDriverRemove will call the HSM’s DriverShutdown routine before
returning.

Example

DriverRemove proc

Cpush ; Macro to save "C" registers
mov eax, DriverModuleHandle ; Get Module Handle from Parameter Block
call MSMDriverRemove ; De-register the driver
Cpop ; Restore "C" registers

DriverRemove endp

7 – 10 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMDoEndOfInterrupt (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts are disabled

Execute at interrupt time

On Return

Interrupts are unchanged

Note EAX and ECX are destroyed

Description This macro is used in DriverISR to send an EOI to the Programmable
Interrupt Controller (PIC). MSMDoEndofInterrupt calls the operating
system to service the primary and secondary PICs.

Note: Novell recommends that the developer use this macro rather than
programming the PIC directly. This will allow the HSM to run on a
wider variety of PCs.

Example

(see example for the macro MSMDisableHardwareInterrupt)

Version 1.00 7 – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMEnableHardwareInterrupt (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts are disabled

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EAX, ECX and EDX are destroyed

Description This macro enables the adapter’s interrupt line on the Programmable
Interrupt Controller (PIC).

Important ! Only use this macro if interrupts can not be enabled and disabled at the
adapter hardware level. If you can control interrupts at the adapter,
you should implement the DriverEnableInterrupt and DriverDisable-
Interrupt routines described in Chapter 5. Drivers that control
interrupts at the adapter can be transported more easily to other OS
platforms where access to the PIC is restricted.

Example

(see example for the macro MSMDisableHardwareInterrupt)

7 – 12 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMEnablePolling

On Entry

EBP Pointer to the Adapter Data Space

Interrupts can be in any state

Call at process or interrupt time (usually called during initialization)

On Return

EAX Zero if successful; otherwise EAX points to an error message
that the driver must print using MSMPrintString before
returning to the operating system with EAX non-zero.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are unchanged

Note EBX and EBP are preserved

Description If the HSM’s board service routine is poll-driven, this routine can be
used during DriverInit to enable the operating system to periodically
call DriverPoll. The DriverPoll routine polls the adapter to determine
if any send or receive events have occurred.

This routine will not relinquish control to other procedures during
execution.

Example

DriverInit proc
•
•
•
call MSMEnablePolling ; Enable DriverPoll
jnz EnablePollingError
•
•
•

DriverInit endp

Version 1.00 7 – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMEndCriticalSection (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note all registers are preserved

Description The MSMStartCriticalSection and MSMEndCriticalSection macros are
used to prevent the TSM from calling DriverSend while it is performing
critical operations. This allows interrupts to be enabled in the
DriverSend and/or DriverISR routine.

When a TCB needs to be sent, the TSM usually calls DriverSend.
However, DriverSend may be reading bytes from the card and starting
a send at this point could corrupt data. If the HSM is in a critical
section, the TSM queues the packet instead of calling DriverSend.

Note: The example on the following page illustrates the use of the macros,
MSMStartCriticalSection and MSMEndCriticalSection. However,
Novell recommends that interrupts remain disabled during the
DriverSend and DriverISR routines.

Important ! If you can control interrupts at the adapter, you should implement the

DriverEnableInterrupt and DriverDisableInterrupt routines described in
Chapter 5. Drivers that control interrupts at the adapter should not
use MSMEnableHardwareInterrupt, MSMDisableHardwareInterrupt,
or MSMDoEndOfInterrupt macros.

7 – 14 Version 1.00

Chapter 7 • MSM Procedures and Macros

Example

DriverISR proc

MSMDisableHardwareInterrupt
MSMDoEndOfInterrupt
inc [ebp].InDriverISR ; Set for DriverSend
MSMStartCriticalSection ; Inform MSM before
sti ; enabling interrupts
.
. (Service the adapter)
.
cli
dec [ebp].InDriverISR ; Clear InISR flag
MSMEndCriticalSection ; Exiting Critical Section
MSMEnableHardwareInterrupt
MSMServiceEventsAndRet ; Let LSL unqueue returned

DriverISR endp

DriverSend proc

cmp [ebp].InDriverISR, 0 ; Called from DriverISR?
jnz DriverStartSend ; Jump if so
MSMDisableHardwareInterrupt
MSMStartCriticalSection ; Inform MSM before enabling
sti ; interrupts

DriverStartSend:
.
. (Send the packet)
.
cmp [ebp].InDriverISR, 0 ; Called from DriverISR?
jnz <TSM>SendComplete ; We’re finished if so.
cli ; Disable interrupts before
MSMEndCriticalSection ; exiting critical section
MSMEnableHardwareInterrupt
jmp <TSM>FastSendComplete ; Give back TCB and service events

DriverSend endp

Version 1.00 7 – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMFree

On Entry

EBP Pointer to the Adapter Data Space

EAX Pointer to the buffer

Interrupts can be in any state

Call at process or interrupt time

On Return

Interrupts are unchanged

Note EBX, EBP, ESI, and EDI are preserved

Description The HSM must use this routine to return any memory allocated using
MSMAlloc before the driver is permanently shutdown. If the driver is
being permanently shutdown, the HSM’s DriverShutdown routine
would have been called with ECX equal to zero.

Example

DriverShutdown proc
•
•
•
or ecx,ecx
jnz PartialShutdown
mov eax,UserBuffer
call MSMFree
•
•
•

DriverShutdown endp

7 – 16 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMFreePages

On Entry

EAX Pointer to the buffer

Interrupts can be in any state

Call at process time only

On Return

Interrupts are unchanged

Note EBX, EBP, ESI, and EDI are preserved

Description The HSM must use this routine to return any memory buffers allocated
on 4K page boundaries using MSMAllocPages before the driver is
permanently shutdown. If the driver is being permanently shutdown,
the HSM’s DriverShutdown routine would have been called with ECX
equal to zero.

Example

DriverShutdown proc
•
•
•
or ecx,ecx
jnz PartialShutdown
mov eax,UserPageBuffer
call MSMFreePages
•
•
•

DriverShutdown endp

Version 1.00 7 – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMGetCriticalStatus (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts can be in any state

Execute at process or interrupt time

On Return

EAX Non-zero if critical section is in progress

Interrupts are unchanged

Note all other registers are preserved

Description MSMGetCriticalStatus returns a value indicating the critical section
status of the HSM. If this value is zero, the HSM is not in a critical
section. A non-zero value indicates that a critical section is in progress.
See MSMStartCriticalSection and MSMEndCriticalSection.

Example

DriverINTCallBack proc

MSMGetCriticalStatus ; EAX = Critical Status
or eax,eax ; In a critical section?
jnz ExitCallBack ; Jump if so
.
. (Process time out)
.

ExitCallBack:
ret

DriverINTCallBack endp

7 – 18 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMGetCurrentTime (macro)

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

EAX current tick count

Interrupts are unchanged

Note all other registers are preserved

Description MSMGetCurrentTime determines the elapsed time (using the current
relative time) for some of the HSM-related activities (for example,
TimeOutCheck). The value returned at the start of an operation
subtracted from the current time is the elapsed time in 1/18th second
clock ticks. This timer requires more than 7 years to roll over, allowing
it to be used for elapsed time comparisons.

Example

mov edx, [ebp].Command ; Let board attempt to
mov al, Board_Transmit ; transmit packet again
out dx, al
MSMGetCurrentTime ; EAX = current time.
mov [ebp].TxStartTime, eax ; Store new timeout

Version 1.00 7 – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMGetHardwareBusType (macro)

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

EAX Bus Type (see Completion Codes below)

Interrupts are unchanged

Note all other registers are preserved

Completion Codes

0 I/O bus is ISA (Industry Standard Architecture)

1 I/O bus is MCA (Micro Channel Architecture)

2 I/O bus is EISA (Extended Industry Standard Architecture)

Description MSMGetHardwareBusType returns a value that indicates the server’s
bus type. This macro allows an HSM to be written so that it can be
used for boards with different bus types.

Note: The bit positions of the completion code do not correspond to those used
in the MLIDFlags field of the configuration table.

Example

MSMGetHardwareBusType ; EAX contains the bus type
cmp eax, 0 ; ISA bus?
jz DoNotScanForSlots ; Jump if it is

7 – 20 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMGetProcessorSpeedRating (macro)

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

EAX contains a value representing the relative processor speed of

the machine

Interrupts are unchanged

Note all other registers are preserved

Description MSMGetProcessorSpeedRating determines the relative processor speed;
the larger the value returned, the faster the processor is operating.

Note: Although this procedure provides a means for calculating timing loop
delays, this routine should never be used unless it is impossible to
enable interrupts and use GetCurrentTime. Novell recommends that
timing loops be avoided whenever possible.

Example

MSMGetProcessorSpeedRating ; EAX = Processor Speed
xor edx, edx ; Clear high dword of dividend
mov ecx, 100 ; Divisor = 100
idiv ecx ; EAX = Speed / 100
mov ecx, 30000h ; EAX = (Speed/100) * 30000h
imul eax, ecx
mov LoopCounter, eax ; Save it

Version 1.00 7 – 21

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMGetRealModeWorkspace (macro)

Macro Parameters

Semaphore dword offset

ProtectedModeAddress dword offset

RealModeSegment word offset

RealModeOffset word offset

WorkSpaceSize dword offset

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EBX, EBP, ESI and EDI are preserved

Description The MSMGetRealModeWorkSpace macro is used in conjunction with
MSMRealModeInterrupt to allow the HSM to execute BIOS interrupts.
The following example illustrates using MSMGetRealModeWorkSpace,
MSMPSemaphore, MSMRealModeInterrupt and MSMVSemaphore to
make a BIOS call in order to access information about EISA slot
configurations.

The input and output parameter structures for the example are defined
as follows:

InputStructure struc
IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IntNumber db ?

InputStructure ends

OutputStructure struc
OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
OFlags dw ?

OutputStructure ends

7 – 22 Version 1.00

Chapter 7 • MSM Procedures and Macros

Example

;***Real Mode Access Workspace variables***

WSSem dd 0 ; Real mode semaphore
WSProtAddr dd 0 ; Protected mode address
WSRealSeg dw 0 ; Real mode segment
WSRealOff dw 0 ; Real mode offset
WSSize dd 0 ; Workspace Size

InputParms InputStructure <>
OutputParms OutputStructure <>

;***Read the configuration from the EISA BIOS***

MSMGetRealModeWorkSpace WSSem WSProtAddr WSRealSeg WSRealOff WSSize
MSMPSemaphore WSSem ; Lock the workspace
movzx ecx, [ebx].MLIDSlot ; Start with Block 0

ReadConfigBlockLoop:
push ecx ; Save Block
lea esi, InputParms ; ESI -> Input Registers
mov [esi].IAXRegister, 0D801h ; AH = 0D8h, AL = 01
mov [esi].ICXRegister, cx ; CH = Block, CL = Slot
movzx eax, WSRealOffset
mov [esi].ISIRegister, ax ; SI = Real Mode Offset
movzx eax, WSRealSegment
mov [esi].IDSRegister, ax ; DS = Real Mode Segment
mov [esi].IntNumber, 15h ; BIOS Interrupt 15h

MSMRealModeInterrupt InputParms OutputParms

pop ecx ; Restore Block/Slot number
cmp eax, 0 ; Was interrupt successful?
jnz RealModeInterruptError ; Jump if not
cmp byte ptr OutputParms.OAXRegister + 1, 81h
je ExitReadConfigLoop ; Jump if last configuration block
cmp byte ptr OutputParms.OAXRegister + 1, 0
jne RealModeInterruptError ; Jump if int not successful
mov esi, WSProtAddr ; ESI -> Block
movzx edx, byte ptr [esi + 0b2h] ; EDX = possible int
and dl, ISOLATE_INT_MASK ; Mask off interrupt field
or edx, edx ; Interrupt?
jz ExitReadConfigLoop ; Jump out if not
movzx eax, byte ptr [esi + 22h] ; EAX = function info
test al, EISA_INT_FUNCTION_BIT ; Valid int?
jnz StoreInterruptLevel ; Jump if so
inc ch ; CH = Next Block
jmp ReadConfigBlockLoop ; Try again

StoreInterruptLevel:
mov [ebx].MLIDInterrupt, dl ; Copy int to configuration table

ExitReadConfigLoop:
MSMVSemaphore WSSemaphore ; Clear Semaphore

Version 1.00 7 – 23

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMInitAlloc

On Entry EAX Number of bytes of memory to allocate

Interrupts can be in any state

Call at process time only

On Return EAX Pointer to the allocated buffer. (zero = failure)

Interrupts are in the same state as when the routine was called (but

might have been enabled during the call if DriverNeeds-

Below16Meg is non-zero)

Note EBX, EBP, ESI, and EDI are preserved

Description HSMs must use the MSMInitAlloc routine if they must allocate memory
prior to calling MSMRegisterHardwareOptions. If successful,
MSMInitAlloc returns a pointer to the allocated buffer in EAX. If the
routine was unsuccessful, EAX will be zero.

If the driver also frees the allocated buffer prior to calling
MSMRegisterHardwareOptions it must use the MSMInitFree routine.
(Use the MSMFree routine to release the buffer any time after
MSMRegisterHardwareOptions is called.)

If the DriverParameterBlock variable, DriverNeedsBelow16Meg, was
initialized to any non-zero value (see chapter 3), the MSM will attempt
to allocate memory below the 16 megabyte boundary.

Example

DriverInit proc

mov eax, UserBufferSize
call MSMInitAlloc
or eax, eax
jz ErrorAllocatingBuffer
mov UserBuffer, eax

mov eax, UserBuffer
call MSMInitFree

call MSMRegisterHardwareOptions

7 – 24 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMInitFree

On Entry

EAX Pointer to the buffer to free

(must have been previously allocated using MSMInitAlloc)

Interrupts can be in any state

Call at process time only

On Return

Interrupts are preserved

Note EBX, EBP, ESI, and EDI are preserved

Description HSMs must use the MSMInitAlloc routine during initialization, if they
must allocate memory prior to calling MSMRegisterHardwareOptions.
If the driver also frees the allocated buffer prior to calling
MSMRegisterHardwareOptions it must use the MSMInitFree routine.
(Use MSMFree instead of this routine to release the buffer any time
after MSMRegisterHardwareOptions is called.)

Example

DriverInit proc

mov eax, UserBufferSize
call MSMInitAlloc
or eax, eax
jz ErrorAllocatingBuffer
mov UserBuffer, eax

mov eax, UserBuffer
call MSMInitFree

call MSMRegisterHardwareOptions

Version 1.00 7 – 25

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMParseCustomKeywords

On Entry

ESI Pointer to the DriverParameterBlock

On Return

EBX is preserved

Zero Flag is cleared if a "T_REQUIRED" custom keyword was not

entered on the command line or by user after being

prompted.

Description Drivers can define keywords that allow custom parameters or flags to
be entered from the "load" command-line. (Refer to Chapter 3, page
3-37, for a complete description of how to define custom keywords.)

Custom keywords are normally processed during initialization when
DriverInit calls MSMParseDriverParameters. If the driver must have
custom keywords processed earlier in initialization, the DriverInit
routine can call MSMParseCustomKeywords.

Note: MSMParseDriverParameters will still call custom keyword procedures
even if MSMParseCustomKeywords called them earlier.

The MSM parses the command-line for custom keywords and calls the
procedure corresponding to that keyword. Requirements for custom
keyword procedures are described in the next section.

7 – 26 Version 1.00

Chapter 7 • MSM Procedures and Macros

Custom Keyword Procedure

When the MSM calls a custom keyword procedure, the values of the
registers on entry will vary depending on which keyword parsing flags
(if any) were used. Page 3-39 of Chapter 3 describes the parsing flags
and how they are used.

On Entry

EDX is non-zero if a T_REQUIRED keyword was found on the original

command-line.

EDX is zero if a T_REQUIRED keyword was not found on the original

command-line and the user had to be prompted for information.

T_REQUIRED - The keyword must be entered. If it doesn’t exist on the

command-line or configuration file, the user will be prompted for it. If the

users does not enter a value, MSMParseCustomKeywords will return with an

error.

T_STRING - The Keyword Routine will be called with a pointer to the

beginning of the string that matched the keyword text.

Example: load <driver> custom int=3

Routine called with ESI pointing to "custom int=3"

T_NUMBER - The Keyword Routine will be called with the value entered on

the command-line in EAX. The user must enter a decimal number.

Example: load <driver> custom=100

Routine called with EAX = 64h

T_HEX_NUMBER - The Keyword Routine will be called with the value

entered on the command-line in EAX. The user must enter a hexadecimal

number.

Example: load <driver> custom=100

Routine called with EAX = 100h

T_HEX_STRING - The Keyword Routine will be called with ESI pointing to a

six byte value that was entered on the command-line. The user must enter

this string using hexadecimal numbers.

Example: load <driver> custom=01020304

Routine called with ESI -> 00, 00, 01, 02, 03, 04

Version 1.00 7 – 27

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

The following is an example of a driver for an adapter that may require
memory below 16 megabytes depending on information read from a
port. The example will prompt the user for an I/O port and determine
whether it needs memory below 16 megabytes or not.

Example

OSDATA segment rw public ’DATA’

DriverParameterBlock label dword
.
.
.

DriverNumKeywords dd 1
DriverKeywordText dd KeywordTextTable
DriverKeywordTextLen dd KeywordTextLenTable
DriverProcessKeywordTab dd KeywordProcedureTable
.
.
.

;DriverParameterBlockEnd

KeywordTextTable dd PortKeyword

KeywordTextLenTable dd PortKeywordLen

KeywordProcedureTable dd PortKeywordRoutine

;--
; Define Keywords and related Parameters
;--

PortKeyword db ’PORT’
PortKeywordLen equ ($ - PortKeyword) OR T_HEX_NUMBER OR T_REQUIRED

dd 300 ; Min port value
dd 360 ; Max port value
dd PortDefault ; Default Port
dd PortValid ; Valid characters
dd PortPrompt ; Prompt string

PortDefault db "300", 0
PortValid db "0..9A..F", 0 ; Hex digits only
Port db "Enter the Port Number: ", 0

;--
; Define some variables used by custom keyword routine
;--

BasePortValue dd 0
PortOnCommandLine dd 0

.

.

.

OSDATA ends

7 – 28 Version 1.00

Chapter 7 • MSM Procedures and Macros

Example (continued)

DriverInit proc

CPush
mov DriverStackPointer, esp

or KeywordTextLenTable, T_REQUIRED
lea esi, DriverParameterBlock
call MSMParseCustomKeywords
jnz DriverInitError ;keyword not entered

mov edx, BasePortValue

(read I/O port information into eax to determine if memory
below 16 meg is required or not)

mov DriverNeedsBelow16Meg, 0 ;assume below 16 not required
or eax, eax ;check if below 16 required?
je DriverInitRegisterHSM ;jump if not
mov DriverNeedsBelow16Meg, -1 ;set below 16 flag

DriverInitRegisterHSM:

lea esi, DriverParameterBlock
call <TSM>RegisterHSM

;* Clear T_REQUIRED bit for the custom keyword so MSMParseDriverParameters will
;* not prompt for it again if it was not on the origianl command-line.

and KeywordTextLenTable, NOT T_REQUIRED

;* We need to set the NeedsIOPort0Bit if "PORT=" is already on the command-line.
;* Otherwise the OS will complain that it saw a standard keyword that wasn’t needed.

mov eax, NeedInterrupt0Bit OR CAN_SET_NODE_ADDRESS
cmp PortOnCommandLine, 0
je DriverInitParse
or eax, NeedsIOPort0Bit

DriverInitParse:

lea ecx,AdapterOptions
call MSMParseDriverParameters
jnz DriverInitError

mov eax, BasePortValue ;force IO Port to what
mov [ebx].MLIDIOPortsAndLengths, ax ;we got from custom keyword

call MSMRegisterHardwareOptions
.
.
.

DriverInit endp

PortKeywordRoutine proc

mov BasePortValue, eax
mov PortOnCommandLine, edx

PortKeywordRoutine endp

Version 1.00 7 – 29

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMParseDriverParameters

On Entry

EAX is the DriverNeedsBitMask

ECX Pointer to DriverAdapterOptions structure

Interrupts can be in any state

Call at initialization time

On Return

Zero Flag Set if successful; otherwise an error occurred.

EAX Zero if successful; otherwise EAX points to an error message

which the driver must print using MSMPrintString before

returning to the operating system with EAX non-zero.

EBX Pointer to the Frame Data Space

Interrupts are disabled

Note no registers are preserved

Description This routine is used in conjunction with MSMRegisterHardwareOptions

to parse the command line options.

Each standard load option corresponds to a field in the driver’s
configuration table. Using the DriverNeedsBitMask as a guide, this
function collects the necessary information from the command line and
from the Adapter Options Structure and fills out the appropriate fields
of the configuration table.

The following pages describe the format the Adapter Options Structure
and the DriverNeedsBitMask.

Note: During this routine the HSM’s custom keywords are also processed (see
"Driver Keywords" in Chapter 3)

7 – 30 Version 1.00

Chapter 7 • MSM Procedures and Macros

Adapter Options The Adapter Options Structure is defined in the ODI.INC file and is
shown below. Each field of the structure is a pointer to a list of
possible options for that field. If an option is not supported, a zero is
placed in that field. The options correspond to fields in the driver’s
configuration table.

AdapterOptionDefinitionStructure struc

IOSlot dd ? ; Ptr to a list of possible slots
IOPort0 dd ? ; " " primary ports
IOLength0 dd ? ; " " number of primary ports
IOPort1 dd ? ; " " secondary ports
IOLength1 dd ? ; " " number of secondary ports
MemoryDecode0 dd ? ; " " primary memory values
MemoryLength0 dd ? ; " " primary memory sizes
MemoryDecode1 dd ? ; " " secondary memory values
MemoryLength1 dd ? ; " " secondary memory sizes
Interrupt0 dd ? ; " " primary interrupt values
Interrupt1 dd ? ; " " secondary interrupt values
DMA0 dd ? ; " " primary DMA values
DMA1 dd ? ; " " secondary DMA values
Channel dd ? ; " " channel # for multichannel adapters

AdapterOptionDefinitionStructure ends

All lists pointed to must begin with a dword value indicating the
number of options in the list. For example, the lists for an adapter with
options for interrupt and port number might appear as follows.

IOPortOptions dd 4 ; number of options
dd 300h,310h,320h,330h ; options

IntOptions dd 3 ; number of options
dd 2, 3, 5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure
<0,IOPortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>

Version 1.00 7 – 31

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Needs Options The DriverNeedsBitMask is used to inform the parser which
configuration options the driver requires.

If there are multiple possibilities for a configuration option and a driver
wants this function to return which option to use, it must set the
appropriate bit of the mask.

If there is only one value for a configuration option, the HSM does not
set its bit in the DriverNeedsBitMask. The value can be set directly in
the configuration table.

Equates for the bit positions of each option are provided in the ODI.INC
file. These options are described in the following table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit # DriverNeedsBits

31 MUST_SET_NODE_ADDRESS (80000000h)

30 CAN_SET_NODE_ADDRESS (40000000h)

13 NeedsChannelBit (00002000h)

12 NeedsDMA1Bit (00001000h)

11 NeedsDMA0Bit (00000800h)

10 NeedsInterrupt1Bit (00000400h)

9 NeedsInterrupt0Bit (00000200h)

8 NeedsMemoryLength1Bit (00000100h)

7 NeedsMemoryDecode1Bit (00000080h)

6 NeedsMemoryLength0Bit (00000040h)

5 NeedsMemoryDecode0Bit (00000020h)

4 NeedsIOLength1Bit (00000010h)

3 NeedsIOPort1Bit (00000008h)

2 NeedsIOLength0Bit (00000004h)

1 NeedsIOPort0Bit (00000002h)

0 NeedsIOSlotBit (00000001h)

7 – 32 Version 1.00

Chapter 7 • MSM Procedures and Macros

Command Line Examples

Option Command Line Description

IOSlot
IOPort0
IOLength0
IOPort1
IOLength1
MemoryDecode0
MemoryLength0
MemoryDecode1
MemoryLength1
Interrupt0
Interrupt1
DMA0
DMA1
Channel

load <driver> SLOT=4
load <driver> PORT=300
load <driver> PORT=300:A
load <driver> PORT1=700
load <driver> PORT1=700:14
load <driver> MEM=C0000
load <driver> MEM=C0000:1000
load <driver> MEM1=CC000
load <driver> MEM1=CC000:2000
load <driver> INT=3
load <driver> INT1=5
load <driver> DMA=0
load <driver> DMA1=3
load <driver> CHANNEL=2

Use slot 4
Base Port0 = 300h
Length0 = 0Ah
Base Port1 = 700h
Length1 = 14h
Base Memory0 = C0000h
MemLength0 = 1000h (4K)
Base Memory1 = CC000h
MemLength1 = 2000h (8K)
Interrupt0 = 3
Interrupt1 = 5
DMA0 = 0
DMA1 = 3
Use Channel 2

Example

IOPortOptions dd 4 ; number of options
dd 300h,310h,320h,330h ; options

IntOptions dd 3 ; number of options
dd 2, 3, 5 ; options

DriverAdapterOptions AdapterOptionDefinitionStructure
<0,IOPortOptions,0,0,0,0,0,0,0,IntOptions,0,0,0>

DriverInit proc
•
•
•
mov eax, NeedsIOPort0Bit OR NeedsInterrupt0Bit OR CAN_SET_NODE_ADDRESS
lea ecx, DriverAdapterOptions
call MSMParseDriverParameters
jnz ParseParameterError
call MSMRegisterHardwareOptions
•
•
•

Version 1.00 7 – 33

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMPrintString

On Entry

ECX Possible argument #1

EDX Possible argument #2

ESI Pointer to a null terminated message

Interrupts can be in any state but might be disabled during the call

Call at initialization time only

On Return

Interrupts are in the same state as when this routine was called

Note EBX, EBP, EDI, and ESI are preserved

Description This function prints the message pointed to by ESI. The HSM’s
initialization routine must call <TSM>RegisterHSM prior to using this
print procedure.

The "Possible Arguments #1 and #2" above are used here the same way
in which they are used in the printf routine in "C." If there are no
format specifications in the string, ECX and EDX are ignored.

This routine has added functionality which supports an additional
string format. If the string is preceded by a word size error number in
the range of 100-999, the MSM will print the driver name, the platform
name (NW for NetWare 386), and the decimal error number, before
printing the specified string. (See Appendix H for a listing of standard
messages.)

Example

ErrorMessage dw 102
db "Board failed to execute reset command.",0

•
•
•
lea ESI, ErrorMessage
call MSMPrintString

The example above would output the following message if the adapter
is an NE2000:

NE2000-NW-102: Board failed to execute reset command.

7 – 34 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMPrintStringFatal

On Entry

ECX Possible argument #1

EDX Possible argument #2

ESI Pointer to a null terminated error message

Interrupts can be in any state but might be disabled during the call

Call at initialization time only

On Return

Interrupts are in the same state as when this routine was called

Note EBX, EBP, EDI, and ESI are preserved

Description This function prints "FATAL: " followed by the specified error message.
The HSM’s initialization routine must call <TSM>RegisterHSM prior
to using this print procedure.

The "Possible Arguments #1 and #2" above are used here the same way
in which they are used in the printf routine in "C." If there are no
format specifications in the string, ECX and EDX are ignored.
(See Appendix H for a listing of standard messages.)

Example

ErrorMessage db ’Adapter %d, Error Code: %x’, CR,LF,0
.
.
.
mov ECX, BoardNumber ; argument #1
mov EDX, ErrorNumber ; argument #2
mov ESI, offset ErrorMessage
call MSMPrintStringFatal

Version 1.00 7 – 35

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMPrintStringWarning

On Entry

ECX Possible argument #1

EDX Possible argument #2

ESI Pointer to a null terminated error message

Interrupts can be in any state but might be disabled during the call

Call at initialization time only

On Return

Interrupts are in the same state as when this routine was called

Note EBX, EBP, EDI, and ESI are preserved

Description This function prints "WARNING: " followed by the specified error
message pointed to by ESI. The HSM’s initialization routine must call
<TSM>RegisterHSM prior to using this print procedure.

The "Possible Arguments #1 and #2" above are used here the same way
in which they are used in the printf routine in "C." If there are no
format specifications in the string, ECX and EDX are ignored.
(See Appendix H for a listing of standard messages.)

Example

ErrorMessage db ’Adapter %d, Error Code: %x’, CR,LF,0
.
.
.
mov ECX, BoardNumber ; argument #1
mov EDX, ErrorNumber ; argument #2
mov ESI, offset ErrorMessage
call MSMPrintStringWarning

7 – 36 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMPSemaphore (macro)

Macro Parameters

Semaphore dword offset

On Entry

Interrupts can be in any state

Execute at process time only

On Return

Interrupts are unchanged

Note EBX, EBP, ESI and EDI are preserved

Description MSMPSemaphore locks the real mode workspace when making an EISA
BIOS call. The HSM’s process might be blocked if another process has
previously locked the semaphore. Once the call returns, the HSM can
safely use MSMRealModeInterrupt to execute BIOS calls. After the
HSM is done accessing the real mode interrupts, it must use
MSMVSemaphore to allow other processes to access them.

Caution: This macro should not be used to handle critical sections that are
local to the HSM.

Example

(see example for the macro MSMGetRealModeWorkspace)

Version 1.00 7 – 37

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMReadEISAConfig

On Entry

CH Configuration Block Number

CL Slot

Interrupts may be in any state

Call at process time only

On Return

EAX Zero if successful; otherwise EAX contains a value indicating
the results of the attempted operation. These values and
their meanings are listed in the Description section below.

ESI Pointer to the buffer containing the configuration read.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are unchanged

Note EBX, ECX, and EBP are preserved

Description MSMReadEISAConfig reads the EISA configuration block specified in
CH for the slot specified in CL into a 320-byte buffer (see EISA
specification). On return, EAX contains a non-zero value if the read
fails for any of the following reasons:

01h - Int 15h vector removed
80h - Invalid slot number
81h - Invalid function number
82h - Nonvolatile memory corrupt
83h - Empty slot
86h - Invalid BIOS routine call
87h - Invalid system configuration

Note: The information returned should be copied into local memory. Once the
driver returns to the operating system or calls a blocking routine the
information in the buffer may change.

Example

DriverInit proc
•
•
• ;ebx = ptr to the Frame Data Space

movzx ecx, [ebx].MLIDSlot ;start with block 0 and correct slot

ReadConfigBlockLoop:
call MSMReadEISAConfig ;get configuration block
jnz ReadEISAConfigError ;jump if error
inc ch ;set ch to next config block
test BYTE PTR [esi+n], Valid_Data ;does buffer contain desired data
jz ReadConfigBlockLoop ;try next config block
•
•
•

7 – 38 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMReadPhysicalMemory

On Entry

ECX Number of bytes to read

ESI physical source address (where to read data from)

EDI logical destination address (where to transfer data to)

Interrupts may be in any state

Call during DriverInit before MSMRegisterHardwareOptions

On Return

Note EBX, EBP, ESI, and EDI are preserved

Description If the driver attempts to access shared RAM before calling
MSMRegisterHardwareOptions, a page fault abend will occur on the
server. Accesses to the shared RAM prior to registration do not
normally happen unless the HSM must obtain additional information
such as interrupt numbers or shared RAM buffer size for the
configuration table.

This routine can be used to read information from a shared RAM
physical address before hardware registration.

See also MSMWritePhysicalMemory

Example

mov esi, SourceAddress ; physical shared RAM address source
lea edi, [ebx].MLIDInterrupt ; logical dest. in frame data space
mov ecx, 1 ; read 1 byte

call MSMReadPhysicalMemory ; transfer data
cmp eax, 0 ; check for errors
jne ErrorReadingFromSharedMemory ; Jump if so

Version 1.00 7 – 39

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMRealModeInterrupt (macro)

Macro Parameters

InputStructure 19 byte Register structure

OutputStructure 20 byte Register structure

On Entry

Interrupts can be in any state

Execute at process time only

On Return

EAX Zero if successful; otherwise the interrupt vector was

unavailable because DOS has been removed.

Zero Flag Set if successful

Interrupts are preserved on return, but may have been changed during

the call.

Note EBX, EBP, ESI and EDI are preserved

Description MSMRealModeInterrupt performs real mode interrupts, such as BIOS
and DOS interrupts. EISA boards must use MSMRealModeInterrupt to
perform the INT 15h BIOS call that returns the board configuration.

This process might relinquish control to other procedures during
execution.

Example

(see example for the macro MSMGetRealModeWorkspace)

7 – 40 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMRegisterHardwareOptions

On Entry

Interrupts can be in any state

Call at initialization time only

On Return

EAX = 0

EAX = 1

EAX = 2

EAX > 2

New Adapter was successfully registered

New Frame Type was successfully registered

New Channel (multichannel adapters) was registered

Pointer to an error message. (hardware registration failed)

EBP Pointer to the Adapter Data Space if successful

EBX Pointer to the Frame Data Space if successful

Interrupts are preserved

Description This function must be called by the HSM’s DriverInit routine to register
the hardware options.

On return from MSMRegisterHardwareOptions:

If EAX is 0, a new adapter was registered and the driver should
continue with initializing the adapter. If a new adapter is being
added, the memory associated with the Adapter Data Space is
allocated and control returns to DriverInit with EBP pointing to
that space.

If EAX is 1, a new frame type was registered for an existing
adapter and the DriverInit routine is basically finished.

If EAX is 2, a new channel was registered for an existing
multichannel adapter. The driver (and MSM) typically treat the
registering of a new channel as a new adapter.

If EAX is > 2, the MSM was unable to register the hardware
options (typically due to conflicts with existing hardware). In
this case, EAX points to an error message which the driver
should print using MSMPrintString. DriverInit should then
return immediately to the operating system with EAX set to any
non-zero value.

Version 1.00 7 – 41

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

DriverInit proc
•
•
•

call MSMParseDriverParameters

call MSMRegisterHardwareOptions

cmp eax,2
ja DriverInitError
je NewChannel

cmp eax,1
je NewFrame

;(Initialize for NewAdapter)

•
•
•

DriverInitExit:
xor eax,eax
ret

DriverInitError:
mov esi,eax
call MSMPrintString
or eax,-1
ret

DriverInit endp

7 – 42 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMRegisterMLID

On Entry

EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts may be in any state

Call at process time only

On Return

EAX Zero if successful; otherwise EAX points to an error message

which the driver must print using MSMPrintString before

returning to the operating system with EAX non-zero.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are unchanged

Note EBX and EBP are preserved

Description After DriverInit has successfully initialized the adapter, it should call
this routine to register the MLID with the Link Support Layer.

Note: When this routine returns, the configuration table contains a valid
board number. HSMs for intelligent bus master adapters may now pass
the board number and frame ID information to the adapter if necessary.

Example

DriverInit proc
•
•
•

call MSMRegisterMLID
jnz RegisterMLIDError
•
•
•

Version 1.00 7 – 43

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMRescheduleLast (macro)

On Entry

Interrupts can be in any state (but might be enabled during the call)

Execute at process time only

On Return

Interrupts are in the same state as when the routine was called

Note EBX, EBP, ESI, and EDI are preserved

Description MSMRescheduleLast places the task last on the list of active tasks to
be executed. This routine must be called only at process time because
it suspends the process and could change the machine state.
MSMRescheduleLast should be used only in the driver initialization and
driver remove procedures.

The example below illustrates the NE3200 driver using it to acquire the
HSM’s first RCB during the driver initialization procedure. Because
the NIC is a bus-master adapter, the HSM must have at least one RCB
to start. This means that the HSM must let other processes execute
until an RCB is available.

Example

sti ; Enable Real Time Clock
MSMGetCurrentTime ; EAX = Time
lea ecx, [eax].(5 * 20) ; ECX = Time + ~ 5 seconds

GetFirstRCBLoop:

mov esi, CommonMaximumSize ; ESI = Max Packet Size
call MSMAllocateRCB ; Allocate an RCB
jz short GotFirstRCB ; Jump if successful

MSMGetCurrentTime ; EAX = Current Time
cmp eax, ecx ; Timed out?
lea eax, NoFirstRCBMsg ; EAX -> Error Message
jae DriverResetErrorExit ; Exit if so
pushad ; Save all registers
MSMRescheduleLast ; Let other processes have
popad ; a turn to execute
jmp short GetFirstRCBLoop ; Try it again

GotFirstRCB:

7 – 44 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMReturnDriverResources

On Entry

Interrupts are disabled

Call at process time only

On Return

Interrupts remain disabled

Note All registers are destroyed

Description If the HSM’s DriverInit routine is unable to initialize the adapter and
has already called <TSM>RegisterHSM, it must call this routine to
return the driver’s resources before exiting.

Example

DriverInit proc

Cpush
•
•
•
call <TSM>RegisterHSM
jnz DriverInitError
•
•
•
[*** Initialize the Adapter ***]
call DriverReset
jnz DriverInitResetError
•
•
•

DriverInitResetError:
push eax
call MSMReturnDriverResources
pop eax

DriverInitError:
mov esi, eax
call MSMPrintString
or eax, 1
Cpop
ret

DriverInit endp

Version 1.00 7 – 45

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMReturnNotificationECB (macro)
MSMFastReturnNotificationECB (macro)

On Entry

ESI Pointer to the notification ECB

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are disabled

Note MSMReturnNotificationECB

ESI, EDI, and EBP are preserved

MSMFastReturnNotificationECB

Assume all registers are destroyed

Description Drivers that support outside management NLMs (such as HMI or CSL)
use these macros to process notification ECBs containing management
alert information.

If the hardware generates an alert, the HSM obtains a notification ECB
using MSMAllocateRCB. This procedure requires a packet size on
entry. The size specified will depend on the amount of information that
must be passed up to the management application. The driver fills in
the ECB with the notification information according to the driver
management specification, sets ESI to point to the ECB, and returns
the notification ECB using one of these macros.

MSMReturnNotificationECB places the ECB in the LSLs holding queue
and waits for the HSM to call MSMServiceEvents before passing it to
the management NLM. MSMFastReturnNotificationECB passes the
ECB immediately to the management application.

Example

HubResetNotification proc
•
•
•
mov esi, 4
call MSMAllocateRCB ; Get notification ECB
•
•
• (Fill in all required notification information)
•
•
mov esi, ECBPtr ; Point to the ECB
MSMFastReturnNotificationECB ; Return the ECB directly to
• the management application
•
•

7 – 46 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMReturnRCB (macro)

On Entry

ESI Pointer to the unneeded RCB

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are disabled

Note EBX, ECX, EDX, EBP, and EDI are preserved

Description MSMReturnRCB returns an unneeded RCB to the LSL. This routine
is called to discard the RCB, not to process it. To return an RCB for
processing, see <TSM>RcvComplete or <TSM>ProcessGetRCB.

Example

mov esi, [ebp].ReceiveQueueHead ; ESI -> First RCB
mov [ebp].ReceiveQueueHead, 0 ; Clear pointer
or esi,esi ; Valid RCB?
jz ShutdownAllRCBsReturned ; Jump if not

ShutdownReturnRCBLoop:

mov ecx, [esi].RCBDriverWS+4 ; ECX -> Next RCB
MSMReturnRCB ; Return RCB
mov esi, ecx ; ESI -> Next RCB
or esi, esi ; Valid RCB?
jnz ShutdownReturnRCBLoop ; Jump if so

Version 1.00 7 – 47

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMScheduleAESCallBack

On Entry

EBP Pointer to the Adapter Data Space

EAX Time Interval in ticks (1 tick ≈ 1/18 sec)

Interrupts can be in any state, but are disabled during the call

Call only at initialization time (during DriverInit)

On Return

EAX Zero if successful; otherwise EAX points to an error message

which the driver must print using MSMPrintString before

returning to the operating system with EAX non-zero.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are preserved

Note EBX and EBP are preserved

Description This routine can be called during DriverInit to enable a periodic call
back to the HSM’s DriverAESCallBack routine. Once enabled, Driver-
AESCallBack is invoked during process time at the intervals specified
by EAX. The MSM sets up the Adapter and Frame Data Space before
calling DriverAESCallBack and automatically schedules a new call back
on return.

Note: DriverAESCallBack is used if any calls are made to routines which can
be invoked at process time only. DriverINTCallBack should be used
instead of DriverAESCallBack when possible. (see MSMSchedule-
IntTimeCallBack)

Example

DriverInit proc
•
•
•

mov eax, 18 ; Schedule call back in 18 ticks
call MSMScheduleAESCallBack
jnz ScheduleCallBackError
•
•
•

7 – 48 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMScheduleIntTimeCallBack

On Entry

EBP Pointer to the Adapter Data Space

EAX Time Interval in ticks (1 tick ≈ 1/18 sec)

Interrupts are disabled and remain disabled

Call only at initialization time (during DriverInit)

On Return

EAX Zero if successful; otherwise EAX points to an error message

which the driver must print using MSMPrintString before

returning to the operating system with EAX non-zero.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are disabled

Note EBX and EBP are preserved

Description This routine can be called during DriverInit to enable a periodic call
back to the HSM’s DriverINTCallBack routine. Once enabled, Driver-
INTCallBack is invoked during the timertick interrupt at the interval
specified by EAX. The MSM sets up the Adapter and Frame Data
Space before calling DriverINTCallBack and automatically schedules a
new call back on return.

Note: DriverINTCallBack cannot be used if calls are made to routines which
can be invoked only at process time. DriverAESCallBack should be
used instead. (see MSMScheduleAESCallBack)

Example

DriverInit proc
•
•
•

mov eax, 18 ; Schedule call back in 18 ticks
call MSMScheduleIntTimeCallBack
jnz ScheduleCallBackError
•
•
•

Version 1.00 7 – 49

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMServiceEvents (macro)

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are disabled on completion, but might have been enabled

during execution

Note all registers are destroyed

Description If the HSM has used <TSM>SendComplete, <TSM>RcvComplete or
<TSM>ProcessGetRCB, it must use either MSMServiceEvents or
MSMServiceEventsAndRet before it exits back to the operating system.

If the HSM must execute any instructions after it services events, then
it must use MSMServiceEvents instead of MSMServiceEventsAndRet.

In the example below, the adapter supports shared interrupts. In this
case, the operating system requires that EAX equal 0 if the interrupt
is for the HSM. The HSM must use MSMServiceEvents and set EAX
to 0 before returning. If MSMServiceEventsAndRet is used, the HSM
returns before it is able to set EAX to 0. If the HSM does not support
shared interrupts, it can return immediately after servicing events,
therefore, the MSMServiceEventsAndRet macro should be used.

Note: If the HSM uses <TSM>FastSendComplete, <TSM>FastRcvComplete,

or <TSM>FastProcessGetRCB exclusively, it does not need to use
MSMServiceEvents. The "fast" routines service events before returning.

Example

DriverISR proc
•
•
•

DriverISRExit:

MSMServiceEvents ; Service Events queue
xor eax, eax ; Inform operating system that interrupt was ours
ret

DriverISR endp

7 – 50 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMServiceEventsAndRet (macro)

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

Note this macro does not return to the HSM

Description If the HSM has used <TSM>SendComplete, <TSM>RcvComplete, or
<TSM>ProcessGetRCB, it must use either MSMServiceEvents or
MSMServiceEventsAndRet before it exits back to the operating system.

Since this macro automatically returns, MSMServiceEventsAndRet must
be the last executable line of code in the routine. If the HSM must
execute any instructions after servicing events, it must use the
MSMServiceEvents macro which does not automatically return.

Note: If the HSM uses <TSM>FastSendComplete, <TSM>FastRcvComplete,
or <TSM>FastProcessGetRCB exclusively, it does not need to use
MSMServiceEvents. The "fast" routines service events before returning.

Example

DriverISR proc
•
•
•

DriverISRExit:

MSMServiceEventsAndRet ; Service Events and Return.

DriverISR endp

Version 1.00 7 – 51

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMSetHardwareInterrupt

On Entry

EBP Pointer to the Adapter Data Space

EBX Pointer to the Frame Data Space

Interrupts are disabled and remain disabled

Call at process time

On Return

EAX Zero if successful; otherwise EAX points to an error message

which the driver must print using MSMPrintString before

returning to the operating system with EAX non-zero.

Zero Flag Set if successful; otherwise an error occurred.

Interrupts are disabled

Note EBX and EBP are preserved

Description The HSM’s DriverInit routine will call this function to set up a
hardware interrupt.

Example

call MSMRegisterHardwareOptions
call MSMSetHardwareInterrupt
jnz SetHardwareIntError

7 – 52 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMStartCriticalSection (macro)

On Entry

EBP Pointer to the Adapter Data Space

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note all registers are preserved

Description The MSMStartCriticalSection and MSMEndCriticalSection macros are
used to prevent the TSM from calling DriverSend while it is performing
critical operations. This allows interrupts to be enabled in the
DriverSend and/or DriverISR routine.

When a TCB needs to be sent, the TSM usually calls DriverSend.
However, DriverSend may be reading bytes from the card and starting
a send at this point could corrupt data. If the HSM is in a critical
section, the TSM queues the packet instead of calling DriverSend.

Note: Critical sections can be nested.

Example

(see example for the macro MSMEndCriticalSection)

Version 1.00 7 – 53

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

MSMVSemaphore (macro)

Macro Parameters

Semaphore dword offset

On Entry

Interrupts can be in any state

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EBX, EBP, ESI and EDI are preserved

Description The MSMVSemaphore macro clears a semaphore that was set with
MSMPSemaphore. MSMVSemaphore is usually used when the HSM
has finished making an EISA BIOS call to allow other processes to use
the workspace.

Example

(see example for the macro MSMGetRealModeWorkspace)

7 – 54 Version 1.00

Chapter 7 • MSM Procedures and Macros

MSMWritePhysicalMemory

On Entry

ECX Number of bytes to write

ESI logical source address (where to read data from)

EDI physical destination address (where to transfer data to)

Interrupts may be in any state

Call during DriverInit before MSMRegisterHardwareOptions

On Return

Note EBX, EBP, ESI, and EDI are preserved

Description If the driver attempts to access shared RAM before calling
MSMRegisterHardwareOptions, a page fault abend will occur on the
server. Accesses to the shared RAM prior to registration do not
normally happen unless the HSM must obtain additional information
such as interrupt numbers or shared RAM buffer size for the
configuration table.

This routine can be used to write information to a shared RAM physical
address before hardware registration.

See also MSMReadPhysicalMemory

Example

mov edi, DestinationAddress ; physical shared RAM address
lea esi, [ebx].MLIDNodeAddress ; logical source is in frame data space
mov ecx, 6 ; write 6 byte node address

call MSMWritePhysicalMemory ; transfer data
cmp eax, 0 ; check for errors
jne ErrorWritingToSharedMemory ; Jump if so

Version 1.00 7 – 55

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

7 – 56 Version 1.00

